Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Modele arima do krótkoterminowego prognozowania obciążeń systemów elektroenergetycznych

Tytuł:
Modele arima do krótkoterminowego prognozowania obciążeń systemów elektroenergetycznych
Autorzy:
Dudek, G.
Data publikacji:
2012
Słowa kluczowe:
krótkoterminowe prognozowanie zapotrzebowania na moc elektryczną
ARIMA
short-term load forecasting
Język:
polski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Przedstawiono jednowymiarowe modele autoregresji i średniej ruchomej do sporządzania krótkoterminowych prognoz zapotrzebowania na moc. Szeregi czasowe obciążeń wykazują trend oraz trzy okresy wahań sezonowych: roczny, tygodniowy i dobowy, co komplikuje budowę modelu prognostycznego. W celu uproszczenia zadania szereg czasowych poddano dekompozycji stosując dwa podejścia. Pierwsze polega na wydzieleniu odrębnych szeregów dla każdej godziny doby. Drugie podejście wykorzystuje regresję lokalną (LOESS) do dekompozycji szeregu na trend, składową sezonową i błąd. Niestacjonarny charakter szeregów zdekomponowanych wymusza zastosowania zintegrowanego modelu ARMA. Dokładność proponowanych metod porównano na przykładach aplikacyjnych z dokładnością modelu opartego na sieci neuronowej.
Univariate autoregressive moving average models for short-term load forecasting are presented. Load time series show a trend and three seasonal patterns: annual, weekly and daily, which complicate the forecasting model construction. To simplify the forecasting problem time series were decomposed using two approaches. The first one consists in the decomposition a time series into separate series for each hour of a day. The second approach uses a local regression (LOESS) to decompose series into trend, seasonal component and error. Nonstationarity of the decomposed time series requires using an integrated ARMA model. The accuracy of the proposed methods were compared on application examples with an accuracy of the model based on neural network.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies