Tytuł pozycji:
Zastosowanie klasteryzacji do automatycznej detekcji artefaktów mrugania oczami w sygnale EEG
W artykule zaprezentowano autorską metodę detekcji krótkich fragmentów sygnału EEG, które zawierają artefakty mrugania oczami. Autorzy, do automatycznego wskazania fragmentów sygnału EEG zawierającego artefakty mrugania oczami wykorzystali uczenie bez nadzoru (algorytm K-means) oraz cechy sygnału takie jak amplituda i statystyki wyższych rzędów. Wyniki działania algorytmu są bardzo zadowalające. Trafność detekcji wynosi 98%. Algorytm pozwala wykluczyć zaznaczone fragmenty sygnału i nie poddawać ich dalszej analizie. Takie podejście zdaniem autorów przysłuży się do efektywniejszego wykorzystania sygnałów EEG.
The paper presents an original method for the detection of short fragments of the EEG signal, which contain eye blinking artifacts. The authors, to automatically identify fragments the EEG signal containing eye blinking artifacts, used unsupervised learning (K-means algorithm) and the signal features such as amplitude and higher-order statistics. The obtained results are very satisfactory. Accuracy of detection is 98%. The algorithm enables to exclude selected fragments of the signal and not analyze them further. Such an approach, according to the authors, enable more efficient use of EEG signals.