Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A Novel Two-stage Residual Learning Based Convolutional Neural Network for Image Super Resolution

Tytuł:
A Novel Two-stage Residual Learning Based Convolutional Neural Network for Image Super Resolution
Autorzy:
Sharma, Shailza
Bawa, Vivek Singh
Kumar, Vinay
Data publikacji:
2019
Słowa kluczowe:
super resolution
convolutional neural network
residual learning
deep learning
subpixel layer
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Image super resolution has gained a lot of attention due to its applications in different fields of image processing. It is used to produce high-resolution images from low-resolution input. Because of the excellent learning capability of convolution neural networks, these networks are able to learn complex spatial structures for image super-resolution. In this paper, two different architectures have been proposed for image super resolution. The first architecture is Dual Subpixel Layer Convolution Neural Network (DSL-CNN), which stacks two subpixel CNN architectures to enhance model depth for better representational capability. Two stages provide an effective upscaling factor of 4. In the second architecture, named as Residue based Dual Subpixel Layer Convolution Neural Network (RDSL-CNN), two-stage residual learning has been introduced which effectively sustains the high frequency details and provides superior results than the previous state-of-the-art methods. The performance of the two architectures has been evaluated on various image datasets, and compared with other state-of-the-art methods.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies