Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Evidence-theoretical modeling of uncertainty induced by posterior probability distributions

Tytuł:
Evidence-theoretical modeling of uncertainty induced by posterior probability distributions
Autorzy:
Kałuża, Daniel
Janusz, Andrzej
Ślęzak, Dominik
Data publikacji:
2025
Słowa kluczowe:
theory of evidence
posterior probabilities
measures of uncertainty
active learning
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
We discuss how the posterior probability distributions produced by machine learning models for analyzed objects can be transformed into evidence-theoretical mass functions that model uncertainties associated with operating those distributions. We investigate the mathematical properties of the introduced mass functions and their corresponding belief functions. We also construct some uncertainty measures based on the functions considered and compare them with several classical uncertainty measures, both theoretically and practically, in the active learning scenarios.
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies