Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Efficient and reliable prediction of dump slope stability in mines using machine learning: an in-depth feature importance analysis

Tytuł:
Efficient and reliable prediction of dump slope stability in mines using machine learning: an in-depth feature importance analysis
Autorzy:
Singh, Sudhir Kumar
Chakravarty, Debashish
Data publikacji:
2023
Słowa kluczowe:
kopalnia węgla
odpady kopalniane
zagrożenie geotechniczne
dump slope stability
machine learning
limit equilibrium method
SMOTE
feature Importance
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
This study rigorously examines the pressing issue of dump slope stability in Indian opencast coal mines, a problem that has led to significant safety incidents and operational hindrances. Employing machine learning algorithms such as Random Forest (RF), k-Nearest Neighbors (KNN), Support Vector Machine (SVM), Logistic Regression (LR), Decision Tree (DT), and Gaussian Naive Bayes (GNB), the study aims to achieve a scientific goal of predictive accuracy for slope stability under various environmental and operational conditions. Promising accuracies were attained, notably with RF (0.98), SVM (0.98), and DT (0.97). To address the class imbalance issue, the Synthetic Minority Oversampling Technique (SMOTE) was implemented, resulting in improved model performance. Furthermore, this study introduced a novel feature importance technique to identify critical factors affecting dump slope stability, offering new insights into the mechanisms leading to slope failures. These findings have significant implications for enhancing safety measures and operational efficiency in opencast mines, not only in India but potentially globally.
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies