Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Wykorzystanie sieci neuronowych do analizy danych i pozyskiwania wiedzy w systemie ekspertowym do oceny parametrów benzyn silnikowych

Tytuł:
Wykorzystanie sieci neuronowych do analizy danych i pozyskiwania wiedzy w systemie ekspertowym do oceny parametrów benzyn silnikowych
Autorzy:
Tadeusiewicz, R.
Haduch, B.
Data publikacji:
2015
Słowa kluczowe:
sieci neuronowe
sztuczna inteligencja
predykcja nieaddytywnych właściwości benzyn
systemy ekspertowe
neural networks
artificial intelligence
prediction of non-additive gasoline properties
expert systems
Język:
polski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
W pracy przedstawiono możliwość wykorzystania sieci neuronowych do analizy danych i tworzenia struktur mogących samodzielnie przetwarzać dane. Rozważania oparto na przykładzie systemów zdolnych do interpretowania zależności pomiędzy składem chromatograficznym benzyny silnikowej a wielkościami opisującymi jej nieaddytywne parametry jakościowe (LOM, LOB, DVPE, E70, E100). Przeprowadzone badania wskazują, że modele opracowane na bazie sieci neuronowych także w tym przypadku sprawdzają się jako dobre narzędzie predykcyjne i mogą być podstawą do tworzenia systemów ekspertowych. Te systemy natomiast mogą w przyszłości stać się ważnym elementem w strukturach kognitywnych wspomagających zarządzanie procesem produkcji paliw w warunkach czasu rzeczywistego.
The paper presents the possibility of using neural networks to analyze data and create structures which can independently process the data. Considerations based on the example of systems capable of interpreting the relationship between the individual chromatographic composition of motor gasoline and non-additive values that describe its quality parameters (RON, MON, DVPE, E70, E100). The study indicates that the models developed based on neural networks are suited predictive tools in this case as well and can be the basis of expert systems. In turn, these expert systems have the potential to become an important element in the cognitive structure of management support fuel production process in real-time conditions.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies