Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Training subset selection for support vector regression

As more and more data are available, training a machine learning model can be extremely intractable, especially for complex models like Support Vector Regression (SVR) train- ing of which requires solving a large quadratic programming optimization problem. Selecting a small data subset that can effectively represent the characteristic features of training data and preserve their distribution is an efficient way to solve this problem. This paper proposes a systematic approach to select the best representative data for SVR training. The distribution of both predictor and response variables are preserved in the selected subset via a 2-layer data clustering strategy. A 2-layer step-wise greedy algorithm is introduced to select best data points for constructing a reduced training set. The proposed method has been applied for predicting deck's win rates in the Clash Royale Challenge, in which 10 subsets containing hundreds of data examples were selected from 100k for training 10 SVR models to maximize their prediction performance evaluated using R-squared metric. Our final submission having a R2 score of 0.225682 won the 3rd place among over 1200 solutions submitted by 115 teams.
1. Track 1: Artificial Intelligence and Applications
2. Technical Session: 14th International Symposium Advances in Artificial Intelligence and Applications
3. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies