Tytuł pozycji:
Reaktywność chemiczna kompozytowego elektrolitu stałego 3Y-TZP/Al2O3 z materiałem katodowym LSCF48 w kontekście możliwości ich wykorzystania do ogniw paliwowych IT-SOFC
Niniejsza praca dotyczy oceny stabilności chemicznej kompozytowego elektrolitu o osnowie z częściowo stabilizowanego dwutlenku cyrkonu i wtrąceniami tlenku glinu (3Y-TZP/Al2O3) w stosunku do elektrody La0,6Sr0,4Co0,2Fe0,8O3 (LSCF48). Analiza fazowa mieszaniny 3Y-TZP/Al2O3-LSCF48 zestawionej w proporcji wagowej 1:1 i poddanej wygrzewaniu w 1073 K nie wykazała obecności innych faz niż wyjściowe. Wzrost temperatury wygrzewania do 1273 K spowodował powstawanie nowych faz krystalicznych, głównie SrZrO3 i CoFe2O4. Wyniki tych badań wskazują na potencjalne możliwości zastosowania elektrolitu 3Y-TZP/Al2O3 do średniotemperaturowych ogniw paliwowych typu IT-SOFC ze względu na kompatybilność chemiczną z katodą LSCF48 w temperaturze przewidywanej eksploatacji ogniwa (1073 K). Ze względu na zachodzące zmiany strukturalne w mieszaninie poddanej wygrzewaniu w 1273 K - złącze elektrolit-katoda nie może być wystawione na działanie tej temperatury przez dłuższy okres czasu podczas wytwarzania ogniwa paliwowego.
The paper presents the evaluation of chemical stability of composite electrolyte with the partially stabilized zirconia matrix and aluminium oxide inclusions (3Y-TZP/Al2O3) in relation to the La0.6Sr0.4Co0.2Fe0.8O3 (LSCF48) electrode. Phase analysis of the 3Y-TZP/Al2O3-LSCF48 mixture batched in a weight ratio of 1:1, and annealed in air at 1073 K revealed the presence of the starting components only while the increase of annealing temperature up to 1273 K (for 5 h and 100 h) caused the formation of new crystalline phases, mainly of SrZrO3 and CoFe2O4. These studies indicate the potential for the application of 3Y-TZP/Al2O3 in intermediate-temperature solid oxide fuel cells (IT-SOFCs) due to the chemical compatibility with the LSCF48 cathode at the expected operation temperature of a cell (1073 K). Due to structural changes of the mixture annealed at 1273 K, the electrolyte-cathode connector cannot be exposed to that temperature for a long time during the manufacturing stage of a fuel cell.