Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Classifying Speech Acts in Political Communication: A Transformer-based Approach with Weak Supervision and Active Learning

Tytuł:
Classifying Speech Acts in Political Communication: A Transformer-based Approach with Weak Supervision and Active Learning
Autorzy:
Schmidt, Klaus
Niekler, Andreas
Kantner, Cathleen
Burghardt, Manuel
Data publikacji:
2023
Słowa kluczowe:
computer science
analytical model
statistical analysis
soft sensor
computational modeling
transformer
informatyka
model analityczny
analiza statystyczna
czujnik
modelowanie obliczeniowe
transformator
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
We present a study on the automatic classification of speech acts in the domain of political communication, based on J. R. Searle's classification of illocutionary acts. Our research involves creating a dataset using the US State of the Union corpus and the UN General Debate corpus (UNGD) as data sources. To overcome limited labeled data, we employ a combination of weak supervision and active learning techniques for dataset creation and model training. Through various experiments, we investigate the influence of external and internal factors on speech act classification. In addition, we discuss the potential for further analysis of speech act usage, using the trained model on the UNGD corpus. The findings demonstrate the effectiveness of Transformer-based models for automatic speech act classification, highlight the benefits of weak supervision and active learning for dataset creation and model training, and underscore the potential for large-scale statistical analysis of speech act usage in the domain of political communication.
1. Thematic Tracks Regular Papers
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies