Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Comparison of the ENATE approach and discontinuous Galerkin spectral element method in 1D nonlinear transport equations

Tytuł:
Comparison of the ENATE approach and discontinuous Galerkin spectral element method in 1D nonlinear transport equations
Autorzy:
Llorente, V.
Rubio, G.
Pascau, A.
Ferrer, E.
Arıcı, M.
Data publikacji:
2016
Słowa kluczowe:
jednowymiarowe równanie transportu
metoda wyższego rzędu
one-dimensional transport equation
high order method
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
In this paper a comparison of the performance of two ways of discretizing the nonlinear convection-diffusion equation in a one-dimensional (1D) domain is performed. The two approaches can be considered within the class of high-order methods. The first one is the discontinuous Galerkin method, which has been profusely used to solve general transport equations, either coupled as the Navier-Stokes equations, or on their own. On the other hand, the ENATE procedure (Enhanced Numerical Approximation of a Transport Equation), uses the exact solution to obtain an exact algebraic equation with integral coefficients that link nodal values with a three-point stencil. This paper is the first of a thorough assessment of ENATE by comparing it with well established high-order methods. Several test cases of the steady Burgers’ equation with and without source have been chosen for comparison.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies