Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Growth control of cracks under contact conditions based on the topological derivative of the Rice’s integral

Tytuł:
Growth control of cracks under contact conditions based on the topological derivative of the Rice’s integral
Autorzy:
da Silva Xavier, Marcel Duarte
Novotny, Antonio André
Sokołowski, Jan
Data publikacji:
2019
Słowa kluczowe:
Rice’s integral
Griffith’s criterion
Eshelby’s tensor
topological derivative
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
In the present paper we propose a simple method for dealing with growth control of cracks under contact type boundary conditions on their lips. The aim is to find a mechanism for decreasing the energy release rate of cracked components, which means increasing their fracture toughness. The method consists in minimizing a shape functional defined in terms of the Rice’s integral, with respect to the nucleation of hard and/or soft inclusions, according to the information provided by the associated topological derivative. Based on Griffith’s energy criterion, this simple strategy allows for an increase in fracture toughness of the cracked component. Since the problem is non-linear, the domain decomposition technique, combined with the Steklov-Poincaré pseudo-differential boundary operator, is used to obtain the sensitivity of the associated shape functional with respect to the nucleation of a small circular inclusion with different material property from the background. Then, the obtained topological derivatives are used to indicate the regions, where the controls should be positioned in order to solve the minimization problem we are dealing with. Finally, a numerical example is presented showing the applicability of the proposed methodology.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies