Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A high-performance arrhythmic heartbeat classification using ensemble learning method and PSD based feature extraction approach

Tytuł:
A high-performance arrhythmic heartbeat classification using ensemble learning method and PSD based feature extraction approach
Autorzy:
Yakut, Önder
Bolat, Emine Doğru
Data publikacji:
2022
Słowa kluczowe:
classification of cardiac arrhythmia
electrocardiogram
ECG
ensemble learning
feature extraction
feature selection
heartbeat segmentation
machine learning
arytmia serca
elektrokardiogram
EKG
uczenie zespołowe
ekstrakcja cech
selekcja cech
uczenie maszynowe
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Health problems, directly or indirectly caused by cardiac arrhythmias, may threaten life. The analysis of electrocardiogram (ECG) signals is an important diagnostic tool for assessing cardiac function in clinical research and disease diagnosis. Until today various Soft Computing methods and techniques have been proposed for the analysis of ECG signals. In this study, a new Ensemble Learning based method is proposed that automatically classifies the arrhythmic heartbeats of ECG signal according to the category-based and patient-based evaluation plan. A two-stage median filter was used to remove the baseline wander from the ECG signal. The locations of fiducial points of the ECG signal were determined using the developed QRS complex detection method. Within the scope of this study, four different feature extraction methods were utilized. A new feature extraction technique based on the Power Spectral Density has been proposed. Hybrid sub-feature sets were constructed using a Wrapper-based feature selection algorithm. A new method based on Ensemble Learning (EL) has been proposed by using a stacking algorithm. Multi-layer Perceptron (MLP) and Random Forest (RF) as base learners and Linear Regression (LR) as meta learner were utilized. Average performance values for the category-based arrhythmic heartbeat classification of the proposed new method based on Ensemble Learning; accuracy was 99,88%, sensitivity was 99,08%, specificity was 99,94% and positive predictivity (+P) was 99,08%. Average performance values for patient-based arrhythmic heartbeat classification were 99,72% accuracy, 99,30% sensitivity, 99,83% specificity and 99,30% positive predictivity (+P). Thus, it is concluded that the proposed method has higher performance results than similar studies in the literature.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies