Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Dimension results related to the St. Petersburg game

Let Sn be the total gain in n repeated St. Petersburg games. It is known that n−1(Sn − n log2 n) converges in distribution along certain geometrically increasing subsequences and its possible limiting random variables can be parametrized as Y (t) with t ∈ [1/2, 1]. We determine the Hausdorff and box-counting dimension of the range and the graph for almost all sample paths of the stochastic process {Y(t)}t∈[1/2, 1]. The results are compared to the fractal dimension of the corresponding limiting objects when gains are given by a deterministic sequence initiated by Hugo Steinhaus.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies