Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Mediastinal lymph node malignancy detection in computed tomography images using fully convolutional network

Tytuł:
Mediastinal lymph node malignancy detection in computed tomography images using fully convolutional network
Autorzy:
Tekchandani, Hitesh
Verma, Shrish
Londhe, Narendra D.
Data publikacji:
2020
Słowa kluczowe:
mediastinal lymph node
deep learning
fully convolutional network
fully connected network
data augmentation
węzeł chłonny
uczenie głębokie
konwolucyjna sieć neuronowa
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Differential diagnosis of malignant and benign mediastinal lymph nodes (LNs) through invasive pathological tests is a complex and painful procedure because of sophisticated anatomical locations of LNs in the chest. The image based automatic machine learning techniques have been attempted in the past for malignancy detection. But these conventional methods suffer from complex selection of hand-crafted features and trade-off between performance parameters due to them. Today deep learning approaches are out-performing conventional machine learning techniques and able to overcome these issues. However, the existing convolutional neural network (CNN) based models also are prone to overfitting because of fully connected (FC) layers. Therefore, in this paper authors have proposed a fully convolutional network (FCN) based deep learning model for lymph nodes malignancy detection in computed tomography (CT) images. Moreover, the proposed FCN has been customized with batch normalization and advanced activation function Leaky ReLU to accelerate the training and to overcome the problem of dying ReLU, respectively. The performance of the proposed FCN has been also tuned to its best for smaller data size using data augmentation methods. The generalization of the proposed model is tested using the network parameter variation. To understand the reliability of the proposed model, it has also been compared with state-of-art related deep learning networks. The proposed FCN model has achieved an average accuracy, sensitivity, specificity, and area under curve as 90.28%, 90.63%, 89.95%, and 0.90, respectively. Our results also confirms the successful usabilility of augmentation methods for working on smaller datasets and deep learning approaches.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies