Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Explorations into Deep Learning Text Architectures for Dense Image Captioning

Image captioning is the process of generating a textual description that best fits the image scene. It is one of the most important tasks in computer vision and natural language processing and has the potential to improve many applications in robotics, assistive technologies, storytelling, medical imaging and more. This paper aims to analyse different encoder-decoder architectures for dense image caption generation while focusing on the text generation component. Already trained models for image feature generation are utilized with transfer learning. These features are used for describing the regions using three different models for text generation. We propose three deep learning architectures for generating one-sentence captions of Regions of Interest (RoIs). The proposed architectures reflect several ways of integrating features from images and text. The proposed models were evaluated and compared with several metrics for natural language generation.
1. Track 1: Artificial Intelligence
2. Technical Session: 15th International Symposium Advances in Artificial Intelligence and Applications
3. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies