Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Surfaces with constant slope and their generalisation

Surfaces with a constant slope with respect to the given surface π are defined in the first part of the paper, which may not be developable in relation to the surfaces of a constant slope. It is shown that rotational conical surface and one-sheet rotational hyperboloid are the only two rotational surfaces with a constant slope. The condition is derived for the surface with a constant slope to be a torsal surface, and a link to the surface of tangents to the space curve is also given. Generalized surfaces with a constant slope are defined in the second part of the paper. Their generating lines are determined by points on a space curve and they have a constant slope with respect to a specific system of planes. Mathematical description of these surfaces enables the creation of various surfaces with a constant slope and their modelling on computer.
Powierzchnie o stałym nachyleniu, omawiane w tej pracy, to powierzchnie, których tworzące są nachylone do pewnej płaszczyzny pod danym kątem. Warunek taki spełnia hiperboloida obrotowa jednopowłokowa. Stąd powierzchnie te nie muszą być powierzchniami rozwijalnymi. Okazuje się wtedy, że powierzchnia stożka obrotowego i hiperboloida jednopowłokowa obro¬towa są jedynymi powierzchniami obrotowymi o stałym nachyleniu. Uogólnione powierzchnie o stałym nachyleniu mają tę własność, że ich tworzące są wyznaczone przez punkty pewnej krzywej przestrzennej i mają stałe nachylenie względem specjalnego układu płaszczyzn. Przedstawiony opis matematyczny uogólnionych powierzchni o stałym nachyleniu umożliwia tworzenie różnych takich powierzchni i ich modelowanie na komputerze.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies