Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Modeling the thermo-mechanical response and phase changes in metallic additive manufacturing (MAM) processes using a dissipative phase-field model

Tytuł:
Modeling the thermo-mechanical response and phase changes in metallic additive manufacturing (MAM) processes using a dissipative phase-field model
Autorzy:
Darabi, Roya
Azinpour, Erfan
Reis, Ana
Sa de, Jose Cesar
Data publikacji:
2024
Słowa kluczowe:
metallic additive manufacturing
direct energy deposition
finite element method
ABAQUS
phase transformations
residual stress
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
Additive manufacturing (AM) has emerged as a highly promising manufacturing technique, offering unprecedented possibilities for creating complex geometries and functional structures. However, harnessing the full potential of AM requires the development of a robust computational framework capable of capturing the intricate multi-scale and multi-physics nature of the process. The constitutive and structural responses encountered in AM are particularly challenging to reproduce due to the complex behavior of the material involved. This research aims to address these challenges by presenting a comprehensive computational approach that incorporates a material model capable of accurately representing the behavior of different phases occurring during AM. To achieve this, the finite element method, using the Lagrangian framework in the implicit time scheme, is employed through the widely adopted ABAQUS software. Computational implementation is facilitated using the FORTRAN programming language. By employing weakly coupled thermal and mechanical constitutive equations, the framework enables the analysis of thermal stresses, strains, and displacements during realistic solidification processes, which inherently involve highly nonlinear constitutive relations. Through a series of numerical examples, the capabilities of the proposed model are demonstrated across various computational scales, particularly during the rapid melting and solidification phases. These simulations reveal the formation of residual stresses, which can lead to part distortion and have detrimental effects on the mechanical properties of the manufactured components. This research contributes to the advancement of additive manufacturing by providing a reliable computational tool that integrates the complex interplay between thermal and mechanical phenomena. The developed framework enhances our understanding of the AM process, offering valuable insights into the factors influencing the structural integrity and performance of additively manufactured parts.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies