Tytuł pozycji:
Diagnostyka przyczyn powstawania wad w odlewach z wykorzystaniem metod statystycznych i sieci neuronowych
Omówiono naiwny klasyfikator Baycsa, stosowany jako probabilistyczny system uczący się. Porównano błędy przewidywania jakości odlewów za pomocą tego systemu oraz sztucznych sieci neuronowych. Wykazano, że zarówno dla wielkości wyjściowych typu binarnego (wystąpienie wady lub jej brak), jak i parametrów ciągłego, model oparty na statystyce może stanowić dobre narzędzie diagnostyczne, alternatywne dla sieci neuronowej.
Naive Bayesian classifier, applied as a probabilistic learning system, is discussed. Prediction capabilities of the system, applied to quality parameters of castings, is compared to those of artificial neural networks. It is shown .that for both types of output: binary (i.e. appearance or lack of a defect) and continuous ones, the statistical type model can be a good diagnostic tool, alternative to neural networks.