Tytuł pozycji:
A Predictor-corrector Infeasible-interior-point Algorithm for Semidefinite Optimization in a Wide Neighborhood
In this paper, we propose a predictor-corrector infeasible interior-point algorithm for semidefinite optimization based on the Nesterov-Todd scaling scheme. In each iteration, the algorithm computes the new iterate using a new combination of the predictor and corrector directions. Using the Ai-Zhang's wide neighborhood for linear complementarity problems, and extended to semidefinite optimization by Li and Terlaky, it is shown that the iteration complexity bound of the algorithm is O(n5/4 log ɛ-1 1), where n is the dimension of the problem and ɛ is the required precision.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).