Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Traffic flow prediction in inland waterways of Assam region using uncertain spatiotemporal correlative features

Tytuł:
Traffic flow prediction in inland waterways of Assam region using uncertain spatiotemporal correlative features
Autorzy:
Muthukumaran, Venkatesan
Natarajan, Rajesh
Kaladevi, Amarakundhi Chandrasekaran
Magesh, Gopu
Babu, Swapna
Data publikacji:
2022
Słowa kluczowe:
deep learning
CNN-LSTM
traffic flow
prediction
waterways
RoI
RNN
optimizer
drop rate
relative error
głęboka nauka
ruch uliczny
prognoza
drogi wodne
optymalizator
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Modern civilization has reported a significant rise in the volume of traffic on inland rivers all over the globe. Traffic flow prediction is essential for a good travel experience, but adequate computer processes for processing unpredictable spatiotemporal data (timestamp, weather, vessel_ID, water level, vessel_position, vessel_speed) in the inland water transportation industry are lacking. Moreover, such type of prediction relies primarily on past traffic patterns and perhaps other pertinent facts. Thus, we propose a deep learning-based computing process, namely Convolution Neural Network-Long Short-Term Memory Network (CNN-LSTM), a progressive predictor of employing uncertain spatiotemporal information to decrease navigation mishaps, traffic and flow prediction failures during transportation. Spatiotemporal correlation of current traffic flow may be processed using a simplified CNN-LSTM model. This hybridized prediction technique decreases update costs and meets the prediction needs with minimal computing overhead. A short case study on the waterways of the Indian state of Assam from Sandiya (27.835090 latitude, 95.658590 longitude) to Dhubri (26.022699 latitude, 89.978401 longitude) is undertaken to assess the model's performance. The evaluation of the suggested method includes a variety of trajectories of water transportation vehicles, including ferries, sailing boats, container ships, etc. The suggested approach outperforms conventional traffic flow predicting methods when it comes to short-term prediction with minimal predictive error (<2.75) and exhibited a major difference of more than 45% on the comparison of other methods.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies