Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Identification and Classification of Spliced Wool Combed Yarn Joints by Artificial Neural Networks. Part 2, Interpretation of Identification and Classification Results of the Unknotted Spliced Yarns Joints

Tytuł:
Identification and Classification of Spliced Wool Combed Yarn Joints by Artificial Neural Networks. Part 2, Interpretation of Identification and Classification Results of the Unknotted Spliced Yarns Joints
Autorzy:
Lewandowski, S.
Stańczyk, T.
Data publikacji:
2005
Słowa kluczowe:
spliced yarn joint
wool combed yarn
yarn identification
joint classification
artificial neural network
learning error
winner neuron
połączenia końcówek przędzy
wełna czesana
Identyfikacja przędzy
wspólna klasyfikacja
sztuczne sieci neuronowe
błąd uczenia
neuron zwycięzca
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
In the first part of the article an Artificial Neural Network (ANN) model designed to recognise and classify pneumatically spliced yarn joints was presented. The effectiveness of recognition and classification of the proposed ANN is presented in this paper. It has been found out that such a network can faultlessly recognise an unknotted spliced yarn joint in the database and assess its quality quickly and effectively. The most favourable effectiveness of recognition has been achieved in the case of the ‘equivalent’ and ‘preference of joint’s appearance’ modes. The constructed network can also successfully be used for the classification of unknotted joints and other phenomena occurring in textile industry.
W pierwszej części artykułu zaprezentowano model sztucznej sieci neuronowej, przeznaczonej do rozpoznawania i klasyfikacji pneumatycznie zaplątanych połączeń końców nitek. W niniejszej części artykułu zaprezentowano skuteczność rozpoznawania i klasyfikowania. Stwierdzono, że taka sieć może bezbłędnie rozpoznawać bezwęzłowe połączenia końców nitek na podstawie bazy danych, a także szybko i skutecznie oceniać ich jakość. Najbardziej korzystną skuteczność rozpoznawania osiągnięto w przypadku trybów „równoważne" i „preferujące wygląd połączenia". Skonstruowana sztuczna sieć neuronowa może być również z powodzeniem wykorzystywana do klasyfikowania bezwęzłowych połączeń, a także innych zjawisk występujących w przemyśle włókienniczym

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies