Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Machine Learning in Energy and Thermal-aware Resource Management of Cloud Data Centers: A Taxonomy and Future Directions

Tytuł:
Machine Learning in Energy and Thermal-aware Resource Management of Cloud Data Centers: A Taxonomy and Future Directions
Autorzy:
Ilager, Shashikant
Buyya, Rajkumar
Data publikacji:
2024
Słowa kluczowe:
cloud computing
energy efficiency
workload management
sustainable computing
machine learning
przetwarzanie w chmurze
wydajność energetyczna
zarządzanie obciążeniem
przetwarzanie
uczenie maszynowe
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Cloud data centres (CDCs) are the backbone infrastructures of modern digital society, but they also consume huge amounts of energy and generate heat. To manage CDC resources efficiently, we must consider the complex interactions between diverse workloads and data centre components. However, most existing resource management systems rely on simple and static rules that fail to capture these complex interactions. Therefore, we require new data-driven Machine learning-based resource management approaches that can efficiently capture the interdependencies between parameters and guide resource management systems. This review describes the in-depth analysis of the existing resource management approaches in CDCs for energy and thermal efficiency. It mainly focuses on learning-based resource management systems in data centres and also identifies the need for integrated computing and cooling systems management. A taxonomy on energy and thermal efficient resource management in data centres is proposed. Furthermore, based on this taxonomy, existing resource management approaches from server level, data centre level, and cooling system level are discussed. Finally, key future research directions for sustainable Cloud computing services are proposed.
1. Main Track: Invited Contributions
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies