Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Cancer gene recognition from microarray data with manta ray based enhanced ANFIS technique

Tytuł:
Cancer gene recognition from microarray data with manta ray based enhanced ANFIS technique
Autorzy:
Mishra, Purnendu
Bhoi, Nilamani
Data publikacji:
2021
Słowa kluczowe:
gene expression
neuro fuzzy inference system
cancer classification
ensemble kalman filter
density based spatial clustering
ekspresja genów
system wnioskowania rozmyty
filtr Kalmana
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Recognizing the cancer genes from the microarray dataset is considered as the most essential research topic in bioinformatics and computational biology domain. Microarray dataset represents the state of each cell at the molecular level which is identified as the important diagnostic tool in medical field. Analyzing the microarray data may provide a huge support for cancer gene classification. Therefore recently a number of artificial intelligence and machine learning techniques are developed which utilize the microarray data for distinguishing the cancer and non-cancer cells. But still now these techniques does not achieved a satisfactory performance. Therefore, an efficient technique that provides a crisp output for cancer classification is required. To overcome such defect, an enhanced ANFIS (EANFIS) method is used in this proposed architecture for classifying the cancer genes. The convergence time of ANFIS gets increased during learning process, therefore to avoid such issue the Manta ray foraging optimization (MaFO) algorithm is hybrid along with ANFIS which improves the overall classification performance. The data given as an input to the classification process is pre-processed at the initial phase using the Ensemble Kalman Filter (EnKF) technique. After pre-processing, the genes having similar properties are clustered using an adaptive density-based spatial clustering with noise (ADBSCAN) clustering technique. Finally, the performance of proposed enhanced ANFIS is evaluated using the precision, accuracy, f-measure, recall, sensitivity, and specificity metrics. Further, the clustering based performance evaluation is also carried out using the cluster index metrics. Finally, the comparison with the state-of-the-art techniques is also performed to show the effectiveness of proposed approach.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies