Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Examining and predicting the influence of climatic and terrestrial factors on the seasonal distribution of ozone column depth over Tehran province using satellite observations

Tytuł:
Examining and predicting the influence of climatic and terrestrial factors on the seasonal distribution of ozone column depth over Tehran province using satellite observations
Autorzy:
Borhani, Faezeh
Ehsani, Amir Houshang
McGuirk, Savannah L.
Shafiepour Motlagh, Majid
Mousavi, Seyed Mohsen
Rashidi, Yousef
Mirmazloumi, Seyed Mohammad
Data publikacji:
2024
Słowa kluczowe:
Sentinel-5P
meteorological condition
NDVI
NASA Giovanni
prediction model
ozone column density
warunki meteorologiczne
model predykcyjny
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
When combined with conducive atmospheric conditions, air pollution caused by fossil fuel consumption associated with transportation, industry and electricity production for households, create and sustain continuous pollution over the megalopolis of Tehran, Iran. In conjunction with daily meteorological forecasts, remote sensing can be used to identify and predict days with hazardous levels of air pollution, providing an opportunity for air quality alert systems to be triggered and warnings circulated to reduce health risks to citizens of Tehran province. Combining remotely sensed ozone column density (OCD) data from the Sentinel-5 TROPOMI sensor with NASA Giovanni data concerning meteorological parameters (temperature (T), wind speed (WS) and specific humidity (SH)), geographical parameters and population data, this study considers the drivers and effects of ozone pollution on the urban climate and vegetation condition (normalized difference vegetation index (NDVI)) of 16 counties in Tehran province, Iran during 12 months (i.e., January 2021 to December 2021). Future monthly forecasts of the OCD, climatic and terrestrial factors in 2022 are also presented. Google Earth Engine and the NASA Giovanni platforms were employed for the processing and analysis of data using an interpolation technique. Additionally, a Box-Jenkins ARIMA and Exponential Smoothing (ETS) models were compared and tailored to generate monthly forecasts of OCD, T, WS, SH and NDVI. The highest and lowest OCD was obtained in June and December 2021, with a concentration of 0.14277 mol/m2 and 0.12383 mol/ m2, respectively. However, the annual average OCD was higher in the cities of Shahriar and Pakdasht in March, with values of 0.13237 mol/m2 and 0.13244 mol/m2, respectively. The lowest OCD recorded was 0.13105 mol/m2, in Shemiranat city, in the north of Tehran. The results indicate a positive correlation between OCD and NDVI, and a negative correlation between OCD, SH, WS and T. A strong seasonal trend in OCD was identified for all cities, but across the entire province, altitude and population size were the most significant explanatory variables for spatial variations in OCD. This research demonstrates that an effective OCD monitoring and forecasting model may be generated from remote sensing and meteorological variables. The implementation and utilization of these models are of paramount importance as they offer vital information to authorities for continuous air quality monitoring and strategic planning, particularly for days with hazardous air pollution. By effectively implementing the OCD model, it has the potential to directly contribute to improved health outcomes in major cities across Iran.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies