Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Supervised Machine Learning with Control Variates for American Option Pricing

Tytuł:
Supervised Machine Learning with Control Variates for American Option Pricing
Autorzy:
Mu, G.
Godina, T.
Maffia, A.
Sun, Y. C.
Data publikacji:
2018
Słowa kluczowe:
American option
Monte Carlo
Gaussian processes
Kriging
LSM
supervised learning
Heston Model
control variates
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
In this paper, we make use of a Bayesian (supervised learning) approach in pricing American options via Monte Carlo simulations. We first present Gaussian process regression (Kriging) approach for American options pricing and compare its performance in estimating the continuation value with the Longstaff and Schwartz algorithm. Secondly, we explore the control variates technique in combination with Kriging to further improve the estimation of the continuation value. This method allows to reduce dramatically the standard errors and to improve the stability of the Kriging approach. For illustrative purposes, we use American put options on a stock whose dynamics is given by Heston model, and use European options on the same stock as control variates.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies