Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Dynamic Clustering Personalization for Recommending Long Tail Items

Recommendation strategies are used in several contexts in order to bring potential users closer to products with a strong probability of interest. When recomendations focus on niche items, they are called recommendations in the long tail. In these cases, they also look for less popular items and try to find your target custumer, niche market. This paper proposes a long tail recommendation approach that prioritizes relevance, diversity and popularity of recommended items. For that, a hybrid approach based on two techniques are used. The first is clustering with dynamic parameters that adapt from according to the dataset used and the second is a type of Markov chains for to calculate the distance of interest of a user to an item of relevance for this user. The results show that the techniques used have a better relevance indexes at the same time more diverse and less popular recommendations.
1. Track 2: Computer Science & Systems
2. Technical Session: Advances in Computer Science & Systems
3. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies