Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Gender-aware speaker's emotion recognition based on 1-D and 2-D features

Tytuł:
Gender-aware speaker's emotion recognition based on 1-D and 2-D features
Autorzy:
Kasprzak, Włodzimierz
Hryciów, Mateusz
Data publikacji:
2023
Słowa kluczowe:
computer science
emotion recognition
biometrics
acoustics
convolutional neural network
spectrogram
informatyka
rozpoznawanie emocji
biometria
akustyka
konwolucyjna sieć neuronowa
spektrogram
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
An approach to speaker's emotion recognition based on several acoustic feature types and 1D convolutional neural networks is described. The focus is on selecting the best speech features, improving the baseline model configuration and integrating in the solution a gender classification network. Features include a Mel-scale spectrogram and MFCC- , Chroma-, prosodic- and pitch-related features. Especially, the question whether to use 2-D maps of features or reduce them to 1-D vectors by averaging, is experimentally resolved. Well--known speech datasets RAVDESS, Tess, Crema-D and Savee are used in experiments. It appeared, that the best performing model consists of two convolutional networks for gender-aware classification and one gender classifier. The Chroma features have been found to be obsolete, and even disturbing, given other speech features. The f1 accuracy of proposed solution reached 73.2% on the RAVDESS dataset and 66.5% on all four datasets combined, improving the baseline model by 7.8% and 3%, respectively. This approach is an alternative to other proposed models, which reported accuracy scores of 60% - 71% on the RAVDESS dataset.
1. Thematic Tracks Short Papers
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies