Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Active Noise Control Using a Fuzzy Inference System Without Secondary Path Modelling

Tytuł:
Active Noise Control Using a Fuzzy Inference System Without Secondary Path Modelling
Autorzy:
Kurczyk, S.
Pawelczyk, M.
Data publikacji:
2014
Słowa kluczowe:
active noise control
adaptive control
fuzzy inference system
FXLMS
sign varying step size
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
For many adaptive noise control systems the Filtered-Reference LMS, known as the FXLMS algorithm is used to update parameters of the control filter. Appropriate adjustment of the step size is then important to guarantee convergence of the algorithm, obtain small excess mean square error, and react with required rate to variation of plant properties or noise nonstationarity. There are several recipes presented in the literature, theoretically derived or of heuristic origin. This paper focuses on a modification of the FXLMS algorithm, were convergence is guaranteed by changing sign of the algorithm steps size, instead of using a model of the secondary path. A Takagi-Sugeno-Kang fuzzy inference system is proposed to evaluate both the sign and the magnitude of the step size. Simulation experiments are presented to validate the algorithm and compare it to the classical FXLMS algorithm in terms of convergence and noise reduction.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies