Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Single target tracking algorithm for lightweight Siamese networks based on global attention

Object tracking based on Siamese networks has achieved great success in recent years, but increasingly advanced trackers are also becoming cumbersome, which will severely limit deployment on resource-constrained devices. To solve the above problems, we designed a network with the same or higher tracking performance as other lightweight models based on the SiamFC lightweight tracking model. At the same time, for the problems that the SiamFC tracking network is poor in processing similar semantic information, deformation, illumination change, and scale change, we propose a global attention module and different scale training and testing strategies to solve them. To verify the effectiveness of the proposed algorithm, this paper has done comparative experiments on the ILSVRC, OTB100, VOT2018 datasets. The experimental results show that the method proposed in this paper can significantly improve the performance of the benchmark algorithm.
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies