Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Algorytm Ewolucyjny inspirowany informatyką kwantową do poprawy parametrów modelu neuralnego wyznaczania cen na Towarowej Giełdzie Energii Elektrycznej notowanych na RDN

Tytuł:
Algorytm Ewolucyjny inspirowany informatyką kwantową do poprawy parametrów modelu neuralnego wyznaczania cen na Towarowej Giełdzie Energii Elektrycznej notowanych na RDN
Autorzy:
Tchórzewski, Jerzy
Ruciński, Dariusz
Data publikacji:
2019
Słowa kluczowe:
algorytm ewolucyjny
dekwantyzacja
kwantowa liczba mieszana
kwantyzacja
obliczenia kwantowe
Rynek Dnia Następnego
sztuczna sieć neuronowa
Towarowa Giełda Energii Elektrycznej
Język:
polski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
Artykuł zawiera wybrane wyniki badań dotyczące istoty i implementacji Algorytmu Ewolucyjnego inspirowanego obliczeniami kwantowymi do poprawy parametrów modelu neuralnego wyznaczającego ceny na Towarowej Giełdzie Energii Elektrycznej. Do uczenia Sztucznej Sieci Neuronowej modelu systemu wykorzystano dane liczbowe notowane na Rynku Dnia Następnego w okresie od 01 stycznia 2015 r. do 30 czerwca 2015 r. Szczególną uwagę zwrócono na sposób systemowego tworzenie Populacji Początkowej oraz na sposób systemowego tworzenie funkcji krzepkości (funkcji przystosowania), a na tej bazie na metodę kwantyzacji, dekwantyzacji i obliczeń kwantowych przeprowadzonych z wykorzystaniem pojęcia kwantowej liczby mieszanej i rachunku wektorowo-macierzowego. Uzyskano znaczącą poprawę modelu neuralnego wspomaganego algorytmem ewolucyjnym inspirowanym kwantowo w stosunku do modelu neuralnego wspomaganego algorytmem ewolucyjnym bez inspiracji kwantowej.
The paper contains selected research results on the nature and implementation of the Evolutionary Algorithm inspired by quantum computation to improve the parameters of the neural model determining prices at the Polish Power Exchange. To learn the Artificial Neural Network system model, the figures quoted on the Commodity Electricity Market of the Day-Ahead Market were used in the period from January 1, 2018 to June 30, 2018. Particular attention was paid to the systemic creation of the Initial Population and the systemic creation of the function of solidification (function adaptation), and on this basis, the quantization, dequantization and quantum computation methods carried out using the quantum concept of a mixed number. Significant improvement of the neural model supported by quantum-inspired evolutionary algorithm in relation to the model without quantum inspiration was obtained.
Angielska wersja tytułu zgodna z zamieszczoną w czasopiśmie.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies