Tytuł pozycji:
Potential theory of Schrödinger operator based on fractional Laplacian
We develop potential theory of Schrödinger operators based on fractional Laplacian on Euclidean spaces of arbitrary dimension. We focus on questions related to gaugeability and existence of q-harmonic functions. Results are obtained by analyzing properties of a symmetric α-stable Lévy process on Rd, including the recurrent case. We provide some relevant techniques and apply them to give explicit examples of gauge functions for a general class of domains.