Tytuł pozycji:
The Simplest Viscous Flow
We illustrate an atomistic periodic two-dimensional stationary shear flow, ux = h x˙ i = ˙y, using the simplest possible example, the periodic shear of just two particles! We use a short-ranged “realistic” pair potential, φ(r < 2) = = (2 − r) 6 − 2(2 − r) 3 . Many body simulations with it are capable of modelling the gas, liquid, and solid states of matter. A useful mechanics generating steady shear follows from a special (“Kewpie-Doll” ∼ “qp-Doll”) Hamiltonian based on the Hamiltonian coordinates {q} and momenta {p} : H(q, p) ≡ K(p) + Φ(q) + ˙ Pqp. Choosing qp → ypx the resulting motion equations are consistent with steadily shearing periodic boundaries with a strain rate (dux/dy) = ˙. The occasional x coordinate jumps associated with periodic boundary crossings in the y direction provide a Hamiltonian that is a piecewise-continuous function of time. A time-periodic isothermal steady state results when the Hamiltonian motion equations are augmented with a continuously variable thermostat generalizing Shuichi Nosé’s revolutionary ideas from 1984. The resulting distributions of coordinates and momenta are interesting multifractals, with surprising irreversible consequences from strictly time-reversible motion equations.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).