Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Identyfikacja dźwięków serca za pomocą algorytmu LPC oraz sztucznej sieci neuronowej

Tytuł:
Identyfikacja dźwięków serca za pomocą algorytmu LPC oraz sztucznej sieci neuronowej
Autorzy:
Gradolewski, D.
Redlarski, G.
Data publikacji:
2014
Słowa kluczowe:
fonokardiografia
przetwarzanie sygnałów
sztuczne sieci neuronowe
sztuczna inteligencja
stetoskop inteligentny
phonocardiography
signal processing
artificial neural networks
artificial intelligence
smart stethoscope
Język:
polski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
W artykule przedstawiono algorytm klasyfikacji sygnału fonokardiograficznego, który umożliwia skuteczną identyfikację 12 różnych stanów. Poprzez połączenie ze sobą algorytmu kodowania liniowego (LPC) wraz ze sztuczną siecią neuronową uzyskano skuteczność klasyfikacji sięgającą 82% oraz pełną skuteczność w rozróżnieniu pomiędzy stanami: braku lub występowania schorzenia. Najlepsze rezultaty uzyskano dla jednokierunkowych, dwuwarstwowych sieci, odpowiednio z 24, 20 oraz 12 neuronami w warstwach ukrytych, których zadaniem było: wstępne wykrycie nieprawidłowości, identyfikacja zdrowego tonu oraz identyfikacja patologii. Do uczenia sieci wykorzystano adaptacyjny algorytm wstecznej propagacji -traingda. Opracowany system w przyszłości może zostać zaimplementowany w urządzeniach mobilnych takich jak smartfony czy tablety.
In this paper a new classification algorithm of phonocardiography signal is presented. It enables an effective identification of 12 different heart sounds. Through the combination of Linear Predictive Coding (LPC) algorithm and artificial neural network, an accuracy of 82% in identification of signals and 100% of precision in distinguishing between pathological and healthy sound were obtained. The best results were obtained with three neural networks with 24, 20 and 12 neurons in the hidden layer, which were responsible for preliminary identification of pathology, identification of healthy tones and identification of the pathology. The networks were taught with traingda backpropagation algorithm. In the future, this system could be implemented on smartphones or tablets.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies