Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Variational mode decomposition-based seizure classification using Bayesian regularized shallow neural network

Tytuł:
Variational mode decomposition-based seizure classification using Bayesian regularized shallow neural network
Autorzy:
Yadav, Vipin Prakash
Sharma, Kamlesh Kumar
Data publikacji:
2021
Słowa kluczowe:
electroencephalogram
epilepsy
seizure epoch classification
variational mode decomposition
data augmentation
shallow neural network
elektroencefalogram
epilepsja
rozszerzanie danych
sieć neuronowa
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
This work presents a new epileptic seizures epoch classification scheme. Variational mode decomposition (VMD), has been explored for non-recursively decomposing the electroencephalogram (EEG) signals into fourteen band limited intrinsic mode functions (IMFs). Data augmentation (DA), has been used for handling unbalanced classification problem. Normalized energy, fractal dimension, number of peaks, and prominence parameters were computed from the band-limited IMFs for the discrimination of seizure and non-seizure epochs. Bayesian regularized shallow neural network (BR-SNNs) and six other well-known classifiers were tested. Sensitivity, specificity, and accuracy have been used as performance metrics. This study includes two different epoch lengths of 1-second and 2-seconds. A total of 32 test cases for both, class balanced and unbalanced classification problems have been taken for the performance evaluation. The best performance obtained is 100% for all the three metrics from the test cases of database-2 and 3. For database-1, average sensitivity, specificity, and accuracy of 99.71, 99.75, and 99.73% have been achieved, respectively for the 1-second epoch. The presented work shows better performance results compared to many previously reported works.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies