Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Composition of arithmetical functions with generalization of perfect and related numbers

Tytuł:
Composition of arithmetical functions with generalization of perfect and related numbers
Autorzy:
Shukla, D. P.
Yadav, S.
Data publikacji:
2012
Słowa kluczowe:
arithmetic functions
abundent numbers
deficient numbers
inequalities
geometric numbers
harmonic numbers
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
In this paper we have studied the deficient and abundent numbers connected with the composition of φ,φ*, σ,σ* and ψ arithmetical functions , where φ is the Euler totient, φ* is the unitary totient, σ is the sum of divisors, σ* is the unitary sum of divisors and ip is the Dedekind function. In 1988, J. Sandor conjectured that ψ(φ(m))≥m, for all odd m and proved that this conjecture is equivalent to ψ(φ(m))≥m/2 for all m. Here we have studied this equivalent conjecture. Further, a necessary and sufficient conditions of primitivity for unitary r-deficient numbers and unitary totient r-deficient numbers have been obtained . Finally, we have discussed the generalization of perfect numbers for an arithmetical function Eα.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies