Tytuł pozycji:
Stochastic optimization algorithms for learning GRNN forecasting model – comparative study
This paper presents stochastic optimization algorithms for learning Generalized Regression Neural Network which is used as a patternbased short-term load forecasting model. For adjustment of the model parameters four types of stochastic optimization methods are used: evolution strategies, differential evolution, particle swarm optimization and tournament searching. The learning effectiveness when using these four algorithms is compared on real power system load data.
W artykule zaprezentowano stochastyczne algorytmy uczenia sieci neuronowej regresji uogólnionej, która pełni funkcję modelu krótkoterminowego prognozowania obciążeń elektroenergetycznych. Do strojenia parametrów modelu użyto czterech metod optymalizacji stochastycznej: strategii ewolucyjnych, ewolucji różnicowej, optymalizacji rojem cząstek i przeszukiwania turniejowego. Efektywność tych metod w uczeniu sieci porównano w badaniach symulacyjnych przy użyciu rzeczywistych danych.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).