Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Zastosowanie algorytmów sztucznych sieci neuronowych do prognozowania zużycia energii elektrycznej

Tytuł:
Zastosowanie algorytmów sztucznych sieci neuronowych do prognozowania zużycia energii elektrycznej
Autorzy:
Włas, M.
Data publikacji:
2016
Słowa kluczowe:
prognozowanie zużycia energii
sztuczne sieci neuronowe
forecasting energy consumption
artificial neural network
Język:
polski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
W artykule przestawiono algorytm przewidywania zużycia energii elektrycznej budynków mieszkalnych z wykorzystaniem informacji o produkcji i warunkach atmosferycznych. W artykule została zaproponowana własna metoda predykcji z wykorzystaniem wielowarstwowej jednokierunkowej sztucznej sieci neuronowej. W pracy zostały przedstawione podstawowe pojęcia z zakresu sieci neuronowych oraz testy działania programu prognozującego na podstawie rzeczywistych danych pomiarowych. Głównym zadaniem badawczym było sprawdzenie dokładności algorytmu predykcji do prognozowania zużycia energii elektrycznej. Ma to na celu uzyskanie programu, którego wyniki o charakterze ilościowym będą wykorzystywane do prognozowania potrzeb zakupowych na TGE (Towarowej Giełdzie Energii) przy udziale metody zakupu energii elektrycznej na Rynku Dnia Następnego.
This paper presents a flexible approach to forecasting of energy consumption in residential buildings, using time series analysis and neural networks. Our goal is to develop a one day-ahead forecasting model based on an artificial neural network using information about temperature of air. The article has been proposed neural network prediction method using a multilayered feed-forward artificial neural network with the backpropagation training algorithm. Experimental results have showed that the proposed neural network can faithfully reproduce the curve of daily energy consumption with a percentage error less than 3.74%.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies