Tytuł pozycji:
A Decomposition Framework for Computing and Querying Multidimensional OLAP Data Cubes over Probabilistic Relational Data
Focusing on novel database application scenarios, where data sets arise more and more in uncertain and imprecise formats, in this paper we propose a novel decomposition framework for efficiently computing and querying multidimensional OLAP data cubes over probabilistic data, which well-capture previous kind of data. Several models and algorithms supported in our proposed framework are formally presented and described in details, based on well-understood theoretical statistical/ probabilistic tools, which converge to the definition of the so-called probabilistic OLAP data cubes, the most prominent result of our research. Finally, we complete our analytical contribution by introducing an innovative Probability Distribution Function (PDF)-based approach, which makes use of well-known probabilistic estimators theory, for efficiently querying probabilistic OLAP data cubes, along with a comprehensive experimental assessment and analysis over synthetic probabilistic databases.