Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A hybrid equilibrium optimizer based on moth flame optimization algorithm to solve global optimization problems

Tytuł:
A hybrid equilibrium optimizer based on moth flame optimization algorithm to solve global optimization problems
Autorzy:
Wang, Zongshan
Ala, Ali
Liu, Zekui
Cui, Wei
Ding, Hongwei
Jin, Gushen
Lu, Xu
Data publikacji:
2024
Słowa kluczowe:
hybrid algorithm
equilibrium optimizer
moth-flame optimization algorithm
metaheuristics
benchmark functions
mobile robot path planning
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
Equilibrium optimizer (EO) is a novel metaheuristic algorithm that exhibits superior performance in solving global optimization problems, but it may encounter drawbacks such as imbalance between exploration and exploitation capabilities, and tendency to fall into local optimization in tricky multimodal problems. In order to address these problems, this study proposes a novel ensemble algorithm called hybrid moth equilibrium optimizer (HMEO), leveraging both the moth flame optimization (MFO) and EO. The proposed approach first integrates the exploitation potential of EO and then introduces the exploration capability of MFO to help enhance global search, local fine-tuning, and an appropriate balance during the search process. To verify the performance of the proposed hybrid algorithm, the suggested HMEO is applied on 29 test functions of the CEC 2017 benchmark test suite. The test results of the developed method are compared with several well-known metaheuristics, including the basic EO, the basic MFO, and some popular EO and MFO variants. Friedman rank test is employed to measure the performance of the newly proposed algorithm statistically. Moreover, the introduced method has been applied to address the mobile robot path planning (MRPP) problem to investigate its problem-solving ability of real-world problems. The experimental results show that the reported HMEO algorithm is superior to the comparative approaches.
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies