Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Mask face inpainting based on improved generative adversarial network

Tytuł:
Mask face inpainting based on improved generative adversarial network
Autorzy:
Liu, Qingyu
Juanatas, Roben A.
Data publikacji:
2023
Słowa kluczowe:
face inpainting
generative adversarial network
residual network
attention mechanism
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
Face recognition technology has been widely used in all aspects of people's lives. However, the accuracy of face recognition is greatly reduced due to the obscuring of objects, such as masks and sunglasses. Wearing masks in public has been a crucial approach to preventing illness, especially since the Covid-19 outbreak. This poses challenges to applications such as face recognition. Therefore, the removal of masks via image inpainting has become a hot topic in the field of computer vision. Deep learning-based image inpainting techniques have taken observable results, but the restored images still have problems such as blurring and inconsistency. To address such problems, this paper proposes an improved inpainting model based on generative adversarial network: the model adds attention mechanisms to the sampling module based on pix2pix network; the residual module is improved by adding convolutional branches. The improved inpainting model can not only effectively restore faces obscured by face masks, but also realize the inpainting of randomly obscured images of human faces. To further validate the generality of the inpainting model, tests are conducted on the datasets of CelebA, Paris Street and Place2, and the experimental results show that both SSIM and PSNR have improved significantly.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies