Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Structured Gaussian Process Regression of Music Mood

Tytuł:
Structured Gaussian Process Regression of Music Mood
Autorzy:
Chapaneri, Santosh
Jayaswal, Deepak
Data publikacji:
2020
Słowa kluczowe:
music mood
structured regression
crowdsourced annotations
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Modeling the music mood has wide applications in music categorization, retrieval, and recommendation systems; however, it is challenging to computationally model the affective content of music due to its subjective nature. In this work, a structured regression framework is proposed to model the valence and arousal mood dimensions of music using a single regression model at a linear computational cost. To tackle the subjectivity phenomena, a confidence-interval based estimated consensus is computed by modeling the behavior of various annotators (e.g. biased, adversarial) and is shown to perform better than using the average annotation values. For a compact feature representation of music clips, variational Bayesian inference is used to learn the Gaussian mixture model representation of acoustic features and chord-related features are used to improve the valence estimation by probing the chord progressions between chroma frames. The dimensionality of features is further reduced using an adaptive version of kernel PCA. Using an efficient implementation of twin Gaussian process for structured regression, the proposed work achieves a significant improvement in R2 for arousal and valence dimensions relative to state-of-the-art techniques on two benchmark datasets for music mood estimation.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies