Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Cooperation of CUDA and Intel multi-core architecture in the independent component analysis algorithm for EEG data

Tytuł:
Cooperation of CUDA and Intel multi-core architecture in the independent component analysis algorithm for EEG data
Autorzy:
Gajos-Balińska, Anna
Wójcik, Grzegorz M.
Stpiczyński, Przemysław
Data publikacji:
2020
Słowa kluczowe:
CUDA
electroencephalography
independent component analysis
parallel programming
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Objectives: The electroencephalographic signal is largely exposed to external disturbances. Therefore, an important element of its processing is its thorough cleaning. Methods: One of the common methods of signal improvement is the independent component analysis (ICA). However, it is a computationally expensive algorithm, hence methods are needed to decrease its execution time. One of the ICA algorithms (fastICA) and parallel computing on the CPU and GPU was used to reduce the algorithm execution time. Results: This paper presents the results of study on the implementation of fastICA, which uses some multi-core architecture and the GPU computation capabilities. Conclusions: The use of such a hybrid approach shortens the execution time of the algorithm.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies