Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Knowledge Detection and Discovery using Semantic Graph Embeddings on Large Knowledge Graphs generated on Text Mining Results

Tytuł:
Knowledge Detection and Discovery using Semantic Graph Embeddings on Large Knowledge Graphs generated on Text Mining Results
Autorzy:
Dörpinghaus, Jens
Jacobs, Marc
Data publikacji:
2020
Słowa kluczowe:
data mining
decision making
graph theory
query processing
text analysis
eksploracja danych
podejmowanie decyzji
teoria grafów
przetwarzanie zapytań
analiza tekstu
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Knowledge graphs play a central role in big data integration, especially for connecting data from different domains. Bringing unstructured texts, e.g. from scientific literature, into a structured, comparable format is one of the key assets. Here, we use knowledge graphs in the biomedical domain working together with text mining based document data for knowledge extraction and retrieval from text and natural language structures. For example cause and effect models, can potentially facilitate clinical decision making or help to drive research towards precision medicine. However, the power of knowledge graphs critically depends on context information. Here we provide a novel semantic approach towards a context enriched biomedical knowledge graph utilizing data integration with linked data applied to language technologies and text mining. This graph concept can be used for graph embedding applied in different approaches, e.g with focus on topic detection, document clustering and knowledge discovery. We discuss algorithmic approaches to tackle these challenges and show results for several applications like search query finding and knowledge discovery. The presented remarkable approaches lead to valuable results on large knowledge graphs.
1. Track 1: Artificial Intelligence
2. Technical Session: 5th International Workshop on Language Technologies and Applications
3. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies