Tytuł pozycji:
Markov transition fields and auto-encoder-based preprocessing for event recognition of Φ-OTDR
- Tytuł:
-
Markov transition fields and auto-encoder-based preprocessing for event recognition of Φ-OTDR
- Autorzy:
-
Hu, Xin
Dai, Jingyi
Wei, Ziyi
Shen, Wei
Yu, Hao
Wu, Haiyang
Xu, Yingwen
Hu, Chengyong
Deng, Chuanlu
Huang, Yi
- Data publikacji:
-
2024
- Słowa kluczowe:
-
distributed optical fiber sensing
Φ-OTDR
optical time-domain reflectometer
disturbance recognition
Markov transition fields
MTF
autoencoder
- Język:
-
angielski
- Dostawca treści:
-
BazTech
-
Przejdź do źródła  Link otwiera się w nowym oknie Pełny tekst  Link otwiera się w nowym oknie
To improve the model training efficiency and the classification performance of the phase-sensitive optical time-domain reflectometer (Φ-OTDR) in disturbance events recognition, a preprocessing method based on Markov transition fields (MTF) and auto-encoder (AE) is proposed. The phase time series, derived from demodulation of the original scattering signals, are converted into images by using the MTF method. Subsequently, an auto-encoder is introduced to perform a dimensionality reduction characterization of the MTF images, and the outputs of the encoder will be used as features for classification. The experimental results demonstrate that, compared with directly processing time series using 1-D CNN and classifying MTF images using CNN, the features obtained by the proposed method can accelerate the training process and improve the recognition performance of the classification model. The recognition accuracy for the four classes of events on the fence reaches 95.6%, representing a 12% increase.