Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Estimation of copper concentrate grade based on color features and least-squares support vector regression

Tytuł:
Estimation of copper concentrate grade based on color features and least-squares support vector regression
Autorzy:
Ren, C.
Yang, J.
Liang, C.
Data publikacji:
2015
Słowa kluczowe:
concentrate grade
copper concentrate
LS-SVR
color features
microscopic image
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
In this paper, a new method based on color features of microscopic image and least-squares support vector regression model (LS-SVR) is proposed for indirect measurement of copper concentrate grade. Red, green and blue (RGB), hue and color vector angle were extracted from color microscopic images of a copper concentrate sample and selected for the comparison. Three different estimation models based on LS-SVR were developed using RGB, hue, and color vector angle, respectively. A comparison of three models was carried out through a validation test. The best model was obtained for the hue giving a running time of 30.243 ms, root mean square error of 0.8644 and correlation coefficient value of 0.9997. The results indicated that the copper concentrate grade could be estimated by the LS-SVR model using the hue as input parameter with a satisfactory accuracy.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies