Tytuł pozycji:
(µ + λ) evolution strategy with socio-cognitive mutation
- Tytuł:
-
(µ + λ) evolution strategy with socio-cognitive mutation
- Autorzy:
-
Urbanczyk, Aleksandra
Kucaba, Krzysztof
Wojtulewicz, Mateusz
Kisiel-Dorohinicki, Marek
Rutkowski, Leszek
Duda, Piotr
Kacprzyk, Janusz
Yao, Xin
Chong, Siang Yew
Byrski, Aleksander
- Data publikacji:
-
2024
- Słowa kluczowe:
-
metaheuristics
socio-cognitive computing
global optimization
- Język:
-
angielski
- Dostawca treści:
-
BazTech
-
Przejdź do źródła  Link otwiera się w nowym oknie Pełny tekst  Link otwiera się w nowym oknie
Socio-cognitive computing is a paradigm developed for the last several years in our research group. It consists of introducing mechanisms inspired by inter-individual learning and cognition into metaheuristics. Different versions of the paradigm have been successfully applied in hybridizing Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), Genetic Algorithms, Differential Evolution, and Evolutionary Multi-agent System (EMAS) metaheuristics. In this paper, we have followed our previous experiences in order to propose a novel mutation based on socio-cognitive mechanism and test it based on Evolution Strategy (ES). The newly constructed versions were applied to popular benchmarks and compared with their reference versions.