Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A proximal-based algorithm for piecewise sparse approximation with application to scattered data fitting

Tytuł:
A proximal-based algorithm for piecewise sparse approximation with application to scattered data fitting
Autorzy:
Zhong, Yijun
Li, Chongjun
Li, Zhong
Duan, Xiaojuan
Data publikacji:
2022
Słowa kluczowe:
piecewise sparse approximation
proximal gradient
scattered data fitting
aproksymacja rzadka
gradient proksymalny
dopasowanie danych
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
In some applications, there are signals with a piecewise structure to be recovered. In this paper, we propose a piecewise sparse approximation model and a piecewise proximal gradient method (JPGA) which aim to approximate piecewise signals. We also make an analysis of the JPGA based on differential equations, which provides another perspective on the convergence rate of the JPGA. In addition, we show that the problem of sparse representation of the fitting surface to the given scattered data can be considered as a piecewise sparse approximation. Numerical experimental results show that the JPGA can not only effectively fit the surface, but also protect the piecewise sparsity of the representation coefficient.
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies