Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Recognition of human gait based on ground reaction forces and combined data from two gait laboratories

Tytuł:
Recognition of human gait based on ground reaction forces and combined data from two gait laboratories
Autorzy:
Derlatka, Marcin
Skublewska-Paszkowska, Maria
Powroźnik, Paweł
Smołka, Jakub
Łukasik, Edyta
Borysiewicz, Agnieszka
Borkowski, Piotr
Czerwiński, Dariusz
Data publikacji:
2024
Słowa kluczowe:
human gait recognition
biometrics
ground reaction forces
databases
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
In a world in which biometric systems are used more and more often within our surroundings while the number of publications related to this topic grows, the issue of access to databases containing information that can be used by creators of such systems becomes important. These types of databases, compiled as a result of research conducted by leading centres, are made available to people who are interested in them. However, the potential combination of data from different centres may be problematic. The aim of the present work is the verification of whether the utilisation of the same research procedure in studies carried out on research groups having similar characteristics but at two different centres will result in databases that may be used to recognise a person based on Ground Reaction Forces (GRF). Studies conducted for the needs of this paper were performed at the Bialystok University of Technology (BUT) and Lublin University of Technology (LUT). In all, the study sample consisted of 366 people allowing the recording of 6,198 human gait cycles. Based on obtained GRF data, a set of features describing human gait was compiled which was then used to test a system’s ability to identify a person on its basis. The obtained percentage of correct identifications, 99.46% for BUT, 100% for LUT and 99.5% for a mixed set of data demonstrates a very high quality of features and algorithms utilised for classification. A more detailed analysis of erroneous classifications has shown that mistakes occur most often between people who were tested at the same laboratory. Completed statistical analysis of select attributes revealed that there are statistically significant differences between values attained at different laboratories.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies