Tytuł pozycji:
Virtual ship’s roll decay test with the use of CFD technique
Since safety of navigation is related to the stability performance of a ship, the transverse stability is routinely calculated and measured. One of the crucial experimental approach is a roll decay test. Although, an obtained result of the roll decay test carried out on the full-scale ship needs to be compared to a benchmark enabling an estimation of the relevant stability. Nowadays such a benchmark is just based on the simplified GM-based IMO-recommended formula. This research aims at the more sophisticated method of ship’s natural period of roll estimation and thus her stability assessment. The CFD (computational fluid dynamics) technique is applied and the result of the free roll simulation is compared to the solution of a roll equation. The one degree-of-freedom roll equation is applied with regard to the nonlinear ship righting moment and the nonlinear damping moment obtained according to Ikeda’s method. The six degrees-of-freedom simulation of ship’s roll decay test was carried out by the use of FlowVision code utilizing the Reynolds-averaged Navier–Stokes equation with regard to the turbulent flows based on the eddy viscosity concept. The semi-empirical k-ε turbulence model was applied. Thereby, the CFD-based approach allows to get rid of any assumptions regarding the value of the damping coefficient, which is an advantage over the roll equation based approach.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.