Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Improved classification robust Kalman filtering method for precise point positioning

Tytuł:
Improved classification robust Kalman filtering method for precise point positioning
Autorzy:
Zhang, Qieqie
Zhao, Long
Zhou, Jianhua
Data publikacji:
2019
Słowa kluczowe:
Kalman filter
classification robust
equivalent weight function
precise point positioning
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
The accuracy and reliability of Kalman filter are easily affected by the gross errors in observations. Although robust Kalman filter based on equivalent weight function models can reduce the impact of gross errors on filtering results, the conventional equivalent weight function models are more suitable for the observations with the same noise level. For Precise Point Positioning (PPP) with multiple types of observations that have different measuring accuracy and noise levels, the filtering results obtained with conventional robust equivalent weight function models are not the best ones. For this problem, a classification robust equivalent weight function model based on the t-inspection statistics is proposed, which has better performance than the conventional equivalent weight function models in the case of no more than one gross error in a certain type of observations. However, in the case of multiple gross errors in a certain type of observations, the performance of the conventional robust Kalman filter based on the two kinds of equivalent weight function models are barely satisfactory due to the interaction between gross errors. To address this problem, an improved classification robust Kalman filtering method is further proposed in this paper. To verify and evaluate the performance of the proposed method, simulation tests were carried out based on the GPS/BDS data and their results were compared with those obtained with the conventional robust Kalman filtering method. The results show that the improved classification robust Kalman filtering method can effectively reduce the impact of multiple gross errors on the positioning results and significantly improve the positioning accuracy and reliability of PPP.
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies